
Protection of Software-based Survivability Mechanisms

Chenxi Wang, Jack Davidson *, Jonathan Hill, John Knight
Department of Computer Science

{ cw2e I jch8f I knight} @cs.virginia.edu

Microsoft Research*

jwd @microsoft.com
University of Virginia Redmond, WA

Abstract

Many existing survivability mechanisms rely on sofi-
ware-based system monitoring and control. Some of the
software resides on application hosts that are not necessar-
ily trustworthy. The integrity of these software components
is therefore essential to the reliability and trustworthiness
of the survivability scheme. In this paper we address the
problem of protecting trusted software on untrustworthy
hosts by software transformations. Our techniques include
U systematic introduction of aliases in combination with a
“break-down ” of the program control-jlow; transforming
high-level control transfers to indirect addressing through
aliased pointers. In so doing, we transform programs to a
form that yields data j low information very slowly and/or
with little precision. We present a theoretical result which
shows that a precise analysis of the transformed program,
in the general case, is NP-hard and demonstrate the appli-
cabilip of our techniques with empirical results.

1. Introduction

In building survivable systems, many existing mecha-
nisms [S, 91 rely on software-based network monitoring and
management. Because some of the software components
for the survivability mechanism will execute on hosts that
are not necessarily trusted, the reliability and trustworthi-
ness of the survivability mechanism is, therefore, of a great
concern.

In this paper, we address the problem of software pro-
tection in a potentially malicious environment. We study
this problem within the context of a survivable distributed
system [9]. In this system, software probes are deployed
onto network nodes for monitoring and control purposes.
These probes are dispatched from a set of trusted servers.
Each probe may employ different algorithms for monitor-
ing local information and for communication with the serv-
ers. For instance, different probes might use different data
sequences, transmit with a different protocol, or monitor
different information. To defeat this network-wide monitor-
ing mechanism, and thereby obtaining control of the net-
work, an adversary must deduce either the algorithm that

0-7695-1101-5/01 $10.00 0 2001 IEEE

the probe uses when monitoring or the protocol with which
the probe communicates with the server. Each of these
attacks requires some level of understanding of the program
behavior, which can be obtained through program analysis.
This paper addresses one important aspect of software pro-
tection-prevention of static analysis of programs,

Static program analysis can reveal a great deal of infor-
mation about the program such as the control flow and pos-
sible uses of data quantities at run-time [l l] . This
information can be used to facilitate dynamic analysis of
the program, and in some cases, aid direct tampering with
the program. In this paper, we introduce a compiler-based
approach to harden software against. static analysis. The
basic approach consists of a set of code transformations that
are designed to obstruct static analysis. The key difference
between our approach and previously proposed code-obfus-
cation techniques [4, 5, 71 is that our techniques are sup-
ported by both theoretical and empirical complexity
measures. Without the complexity measures, code-obfusca-
tion techniques are at best ad hoc.

The problem of software protection has been investi-
gated in other studies. The notable ones include INTEL‘S
IVK project [2], Collburg’s code obfuscation work [4, 51
and mobile cryptography [20]. The IVK work coined the
phrase Tamper Resistant Sopware. Their technique was
novel but came with the price of considerable run-time cost.
The mobile cryptography study proposed a technique to
execute programs in an encrypted form. In its present form,
the technique has limited applicability (e.g., rational func-
tions).

The approach described in this paper is developed
based on well-understood programming language princi-
ples, which serve as the basis for the complexity measures.
We structure the paper as follows: In section 2, we present
the system model and assumptions on which this work is
based. Section 3 describes the basics of static analysis. Sec-
tions 4 and 5 present the transformations to hinder control-
flow and data-flow analysis. Sections 6 discusses theoreti-
cal and practical foundations of the proposed scheme. Sec-
tions 7 presents our implementation and experimental
results.

193

mailto:cs.virginia.edu
mailto:microsoft.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Protection of Software-based Survivability Mechanisms

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Virginia,Department of Computer Science,151 Engineer’s
Way,Charlottesville,VA,22904-4740

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. The system model

In this section we describe the assumptions and the
system model to set the context for discussion. Our system
consists of a set of computing hosts connected via a net-
work and a set of communicating processes running on
these hosts. The hosts are divided into two categories:
application hosts and survivability control hosts. The pro-
cesses relevant to the survivability control mission are the
control processes running on the control hosts and the
probe programs running on the application hosts. The
probes are responsible for local monitoring and reconfigu-
ration. The control processes collect monitoring informa-
tion from the probes, conduct network-wide analysis, and
issue reconfiguration commands to the probes if real-time
changes are deemed necessary. An overview of the system
architecture is depicted in Figure 1.

Several characteristics and assumptions about the sys-
tem are important for the discussion. They are listed below:

Trusted control servers: In our system, the control
servers and the control processes running on top of them are
presumed trusted.

Trusted network communications: We assume the
network communications between the control processes and
the software probes are trusted.

Diversity in the probing mechanism: In this system,
the probing mechanism makes use of two forms of diversity
that are essential to the approach detailed in later sections.
They are temporal diversity and spatial diversity. Temporal
diversity takes the form of periodic replacement of the probes
with a new version dispatched from the trusted control
servers. Spatial diversity refers to the installation of different
versions of probes across the network. Each version of the
probes may use a different probing algorithm, a different
protocol to communicate with the control server, and may
appear to have a different operational semantics [21]. The
use of diversity here makes it essential for an adversary to

Application Host €3 (probe E)

b e A) / Applic

Application Network

01

Application Network

01

Control Servers

Figure 1 : A controlled network

learn the program algorithm in order to launch an intelligent
tampering or impersonation attack.

High level of interactions between the probes and the
control processes: While executing on a remote host, the
probes maintain a high level of interaction with its control
server via predetermined protocols. It is assumed that the
probes perform integrity checks whose results are verified
by the control servers. The checking mechanisms are also
installation-unique in that each probe program may employ
a set of different checks. It is not the task of this paper to
devise the checking mechanisms. It suffices to state that the
integrity checks may be performed on the software itself as
well as its executing environment. The result of the integrity
checks establishes the basis of the probe’s identity and
authenticity.

In this work, we are primarily interested in defending
against sophisticated attacks that fall under the category of
intelligent tampering and impersonation attacks.

Intelligent Tampering. Intelligent tampering refers to
scenarios in which an adversary modifies the program or data
in some specific way that allows the program to continue to
operate in a seemingly unaffected manner (from the trusted
server’s point of view), but on corrupted state or data.

Impersonation. An impersonation attack is similar to
intelligent tampering in that the attacker seeks to establish a
rogue version of the legitimate program. The difference lies
in that the former attempts to emulate the behavior of the
original program, while the latter aims to modify the program
or its data directly.

It should be noted that denial-of-execution attacks are
not considered here. In this problem context, denial-of-exe-
cution produces straightforward symptoms that can be
readily identified by the trusted server (e.g. loss of commu-
nication). Unlike denial-of-execution, an intelligent tamper-
ing or impersonation attack may not be immediately
obvious; if the attacker has detailed knowledge of what the
software is supposed to do and the appropriate privilege to
instantiate a malicious copy, he can replace the original pro-
gram and make the replacement virtually undetectable.
Such attacks therefore have the potential to inflict substan-
tial harm-the adversary could manipulate the program to
perform seemingly valid but malicious tasks.

With the diversity scheme and the integrity checks in
store, a successful intelligent tampering or impersonation
attack requires knowledge about the probe algorithm and
the communication protocol in order to bypass or defeat the
checking mechanism. This in turn requires information
about the program semantics, and it is this information that
we endeavor to protect. For example, consider the follow-
ing code segment:

194

int a = functionl() ;

int b = function2() ;

Check-for-intrusion(&a, &b);

p = &a;
integrity-check(p);

If an adversary were to tamper with the
Checkfbr-intrusion() function, he or she needs to under-
stand whether and how the Checkfbr-intrusion() function
changes the values of a and b, and whether a or b will be
used later in the program. Without this knowledge, his
action can be revealed when integrit)l-check(p) is called.

Our premise is that an adversary aiming to tamper with
or impersonate the program in an intelligent way must
understand the effect of his action, and this boils down to an
understanding of the program semantics. One way this
understanding can be acquired is through program analysis.
This paper deals with obstruction of program analysis, in
particular, static analysis of programs. Our approach con-
sists of a framework of code transformations designed to
increase the difficulty of static program analysis, and that is
described in the remaining sections.

3. Static analysis of programs

Static analysis refers to techniques designed to extract
information from a static image of a computer program.
Static analysis is often more efficient than analyses per-
formed dynamically such as simulated execution.

From the software-protection point of view, static anal-
ysis could yield useful information for targeted manipula-
tion of software. Consider again the code example in the
last section. A use-def analysis [I l l of the code segment
would quickly reveal that a possible definition of the data
quantity a in function Checkjor-intrusion() will be propa-
gated to a use (through its alias p) in function
integrity_check(). Based on this knowledge, an adversary
could then perform specific modification to
Checkfbr-intrusion() so long as he leaves the semantics of
a intact for its later use.

Static analysis can be conducted in a manner that is
either sensitive or insensitive to the program control-flow.
Flow-insensitive analysis is generally more efficient at the
price of being less precise [1 I , 141.

A flow sensitive analysis first constructs the Control-
Flow Graph (CFG) of the program. Such a graph consists of
nodes which are basic blocks and edges that indicate con-
trol transfers between blocks. The analysis then proceeds to
solve the data-flow problem based on the CFG.

It is important to note that control-flow analysis is the
first stage of the analysis-it provides information on the
program call structure and control transfer that is essential
for subsequent data-flow analysis. Without this informa-

tion, data-flow analysis is restricted to the basic-block level
only and will be fundamentally ineffective for programs
where data usage is dependent on program control-flow.

The technical basis of our approach to defeating static
analysis is to transform the program control-flow to a
highly data-dependent nature; that is, the control-flow and
data-flow analysis are made co-dependent. The results of
this co-dependence are: (1) increased complexity of both
analyses; and (2) reduced analysis precision.

4. Degeneration of control-flow

In a normal program, determining the CFG is a
straightforward operation when branch instructions and tar-
gets are easily identifiable-it 'is a linear operation of com-
plexity O(n), where n is the number of basic blocks in the
program.

The first set of code transformations that we employ
modify high-level control transfers to obstruct static detec-
tion of the program CFG. We perform this transformation in
two steps. In the first step, high-level control structures are
transformed into equivalent if-then-goto constructs. This
transform is illustrated in Figure 2 in which the sample pro-
gram in Figure 2(a) is transformed into the structure in Fig-
ure 2(b).

Secondly, we modify the goto statements such that the
goto target addresses are determined dynamically. In C, we
implement this by replacing the goto statements with an
entry to a switch statement, and the switch variable is com-
puted dynamically to determine which block is to be exe-
cuted next. The transformed code (based on the code
segment of Figure 2(a)) is depicted in Figure 3.

With the above transformations, direct branches are
replaced with data-dependent instructions. As a result, the
CFG that can be obtained from static branch targets degen-
erates to a flattened form shown in Figure 3. It can be
shown that this degenerate form is equivalent to the control-
flow perceived by a flow insensitive analysis [14]. Without

int a , b;
a = l ;

whi le(a<lO) (
b=a+b;
if(b>lO)

a++;
1
use(b);

b=2;

b--.

(a)

L1: 11 (! (a < 1 0)) "i go10 L4

, l (! (b > l O))

L4: use (b)

Figure 2: Dismantling high-level constructs

195

I
swVar = 1

a:l;
b.2;
swVar = elSe
2;

Figure 3: Transforming to indirect control transfers

knowledge of the branch targets and the execution order of
the code blocks, every block is potentially the immediate
predecessor andfor successor of every other block.

In the absence of the branch-target information, the
complexity of building the static CFG is determined by how
easy it is, at each branching point, to discern the latest defi-
nition of the switch variable. This is exactly a classical use-
n-def data-flow problem [l l] . Note that we have trans-
formed the control-flow analysis into a data-flow problem.
The complexity of data-flow analyses is influenced by vari-
ous program characteristics such as aliasing [111. We show
in the next section how manipulation of data flow charac-
teristics can yield additional complexity for data-flow anal-
ysis and ultimately render static analysis an extremely
difficult problem, if not entirely infeasible.

5. Data-flow transformations

After the transformations described in Section 4, the
complexity of building the CFG now hinges on the com-
plexity of determining branch targets, which is in essence a
use-n-def data-flow problem. Many classical data-flow
problems are proven to be NP-complete[l2, 161. A funda-
mental difficulty that data-flow analysis must deal with is
the existence of aliases in the program. Alias detection is
essential to many data-flow problems. For example, in
order to determine the live definition problem, a data-flow
algorithm must understand the alias relationships among
variables since data quantities can be modified when
assignments are performed on any aliased names.

Our second set of transformations focuses on the intro-
duction of non-trivial aliases into the program to influence
the computation and the analysis of the branch targets.
These transformations include the following techniques:

Index computation of branch targets: Consider the
code segment in Figure 4(a). A use-n-def analysis to ana-
lyze where the switch variable swVur (contains branch tar-
get information) is defined is straightforward (the dashed

line indicates a use-def information chain). Now consider
the code segment in Figure 4(b) in which a global array
“global-array” is introduced and the value of swVar is
computed through the elements of the array VI() and $20
indicate complex expressions of subscript calculation).
Replacing the constant assignment in Figure 4(a) with indi-
rect accesses of the array implies that the static analyzer
must deduce the array values before the value of swVur can
be determined

Aliases through pointer manipulation: We introduce
aliases in the following steps:

In each function, we introduce an arbitrary number of
pointer variables. We insert artificial basic blocks, or code in
existing blocks, that assign the pointers to existing data
variables including elements of the global array.

We replace references to variables and array elements
with indirection through these pointers. Previously
meaningful computations on data quantities are replaced
with semantically equivalent computation through their
aliased names (assignments to the global-urruy elements
may appear as assignments to a pointer variable)

As much as possible, uses of the pointers and their
definitions are placed in different blocks. This is to introduce
difficulties for the use-n-def analysis.

Some of the basic blocks will execute, and others are
simply dead code. Since the static analyzer does not know
which blocks actually execute, and since definition of the
pointers and their uses are placed in different blocks, the
analyzer will not be able to deduce which definition is live
at each use of the pointer-all pointer assignments will
appear live.

For example, a static analysis performed on the code
segment in Figure 5(a) can quickly determine that only the
second definition of the pointer variable p will carry to
point A during execution. However, if the basic block in
Figure 5(a) is decomposed into two blocks and the transi-

196

I I

defined as 4
b = b t a ;
if (! (b> 1 0))

swVar = 5;
....... else

Va I '$,

1
goto switch

int global-array[TI
...........
.....................................

delined as ?
defin'ed as ?

._.." b = b t a ;

else

if (!(b>10))_."
......

...'._I
swVar = gIobaI-array-lfl() I ;

.....
s wVa r = g lo ba I-a r ra y [I2 () I ;

1 goto switch I (b)

Figure 4: Example illustrating dynamic computation of branch targets

tion between blocks is obfuscated using our flatten-and-
jump technique as depicted in Figure 5(b), the static ana-
lyzer will report both alias relations <*p, a> and <*p, b>
because it does not know which block executes first.

Figure 6 illustrates example transformations as applied
to the program in Figure 2(a). The result of the transforms
is the following: a static analyzer will report imprecise alias
relations that suggest that the global array is altered, and
that its contents do not remain static. With sufficient alias
introduction, the analysis will resolve an array element to a
large set of possible values. This in turn implies that, at
each use, the switch variable that controls the flow of exe-
cution in the degenerate form of the program can take on a
large set of values.

It can be argued that if an adversary can capture the ini-
tial value of swVur, he can then find the first block to be
executed, and from there identify each subsequent block.
While this may allow the adversary to recover some of the
original control flow, it is important to note that this analy-
sis requires an interpretation of every preceding block in
order to recover the current basic block-an effort that
exceeds the cost of most static analyses.

It can also be argued that simulation is required only
once for each block, and as a result, the complexity of ana-

'p = a; 'p = b;
b = 3;

p = a;
a = a t b ;
p = b;

b = 3;

<*p, b> <'p, a> <*p, b>

Figure 5: Introducing aliases through pointers

lyzing such a program lies somewhere between static analy-
sis and a full execution trace, with analysis time
proportional to the number of blocks in the program. One
way to defeat this analysis is to unroll loops and introduce
semantically equivalent basic blocks that will be chosen
randomly during execution. Consequently, the effort
required in recovering the program control-flow will be
comparable to a full simulation. In addition, the initial com-
putation of swVur can be erased from memory once it is
used to avoid unnecessary exposure of information.

6. Complexity evaluation

We have thus far conjectured that the difficulty of dis-
cerning indirect branch target addresses is influenced by
aliases in the program. In this section, we support this claim
by presenting a proof in which we show that determining
precise indirect branch addresses statically is a NP-hard
problem in the presence of general pointers.

6.1. A NP-hard argument

Theorem 1: In the presence of general pointers, the
problem of determining precise indirect branch target
addresses is NP-hard.

Proof Our proof consists of a polynomial time reduc-
tion from the 3-SAT problem to that of determining precise
indirect branch targets. This is a variation of the proof orig-
inally proposed by Myers in which he proved that various
data--flow problems are NP-hard in the presence of aliases
[121. Landi later proposed a similar proof to prove that alias
detection is NP-hard in the presence of general pointers
[161. The detailed reduction can be found in other extended
documents [21,22].

The NP-hardness proof establishes that the problem of
statically determining branch target addresses is NP hard in
the presence of general pointers. This result applies to the
set of general programs (with general pointers), which, at

197

the first brush of reaction, may not be the same as the set of
programs produced by our transformations. We must fur-
ther establish that the set of transformed programs does not
represent a restricted class of programs and that the proof
also applies. We approach this as follows.

Assuming the set of general programs is A and the set
of programs produced by our transformations is A' , to show
that A' is not a restricted subset of A (with respect to the NP
hard proof) it suffices to show that

1) There is a polynomial time mapping for every
instance a in A to a functionally equivalent instance in A' .

2) If there is a polynomial-time algorithm to resolve
indirect branch targets for any instance in A', then this algo-
rithm can be used to resolve indirect branch targets for
instances of A.

Establishing a polynomial time mapping from
instances of A to instances of A' is straightforward; this
mapping consists of exactly the code transformations we
described in Section 4 and 5.

Because the transformations introduced in Section 4
and 5 are semantics-preserving transformations, an algo-
rithm that resolves indirect branch targets for an instance in
A' will by definition resolve indirect branch targets for its
functionally equivalent instance in A. More intuitively, if all
the indirect branching targets for an instance in A' are
resolved to direct jumps, it is a polynomial-time task to
restore the original control-constructs (from the flattened $-
else-goro constructs) and therefore deduce the branch tar-
gets for the original program in A.

The reduction from 3-SAT does not make use of any
program characteristics other than multiple levels of pointer
dereferencing and conditional branches. The transforma-
tions described in Section 4 and 5 preserve the presence of
conditional branches and arbitrary levels of pointers and
pointer dereferencing. From an intuitive standpoint, this

suggests that the reduction from 3-SAT also stands for the
transformed program.

6.2. Complexity evaluation for approximation
analysis methods

While the NP-hard result bode well for the alias-based
code transformations, we still need to evaluate our
approach against possible heuristics and approximation
methods. In this section, we explore the effect of two analy-
sis methods: brute-force search and alias approximations.

Brute-force search method. To determine the execu-
tion order of the code blocks that appear in the degenerate
form of the program, an adversary might employ a brute-
force search method in which all combinations of the code
block ordering are explored. This is a naive exhaustive
search heuristic in which each block is considered equally
likely to be the immediate successor of the current block
(including the current block itself). The time complexity of
such a brute-force method is O(nk), where I I is the number
of distinct program blocks and k is the number of blocks
that will be executed. Clearly, this represents the worst-case
time complexity and is extremely inefficient when the value
of n and k are sufficiently large.

Alias-detection approximation methods. The prob-
lem of precise alias detection in the presence of general
pointers and recursive data structures is undecidable [1 I ,
161. In practice, however, approximation algorithms are
often used [111. An alias analysis algorithm may analyze
aliases intra-procedurally as well as across procedural
boundaries.

Intra-procedural alias analysis requires as input the
alias set holding at the entry node of the procedure, the alias
set propagated back from any procedure called within the

I , int 'pl,;2, 'p3; ,

b.2;
p i = &array;
swVar = array[f()];

Y
i f (!(a < 10)) p 2 t t ; b--. a t t ;

else swVar = array[f()];

p2 = &array[23]; ' p 3 t t ; ' (p l t 1 4) = 0; b = b t a;
sw~ar=array[f () l ; if (! (b>iO)) swVar = array[f()] ; swVar = array[f()];

use (b); 9
-

Figure 6: An example transform using pointer manipulation

198

current procedure, and the alias processing functions (trans-
fer functions) of each pointer assignment statement. Well-
known data-flow frameworks [I I , 171 exist for handling
intra-procedural alias analysis. They are divided into flow-
sensitive and flow-insensitive methods. Flow-sensitive
methods make use of control-flow path information, and
are more precise than flow-insensitive methods. The trans-
formations described in Section 4 and 5 produce a degener-
ate form of static control flow. As a result, flow-sensitive
analysis conducted on this form of control flow loses preci-
sion advantage it has over the flow-insensitive methods.
Figure 7 illustrates such an example.

The CFG in Figure 7 shows that the assignment q = &c
overwrites the alias relation <*q, b>, and p = &b overwrites
<*p, D. A flow-sensitive alias analysis algorithm, con-
ducted on the control flow in Figure 7(a), would result in an
alias set (<*a, c>, <*p, d>, <*q, c>} for this segment. The
degenerate control flow in Figure 7(b) essentially repre-
sents the set of all possible paths with these blocks. Even a
flow-sensitive analysis algorithm at best must conclude
with the alias set <*a, c>, <*p, a> <*p, d>, <*q, c>, <*q,
b>}. Horwitz [141 presented a definition of precise flow-
insensitive alias analysis. Under this definition, the flow-
sensitive analysis result obtained from the CFG in Figure
7(b) is exactly the same result as a precise flow-insensitive
algorithm would have concluded with the CFG in Figure
7(a). We thus conjecture that, with the degenerate form of
control flow, a flow-sensitive analysis can be no more pre-
cise than its flow-insensitive counterpart.

The transformations presented in this paper are intra-
procedural transforms in the sense that they do not affect a
control-flow analysis on the procedural level. However, an
inter-procedural alias analysis is inherently based on the
result of intra-procedural alias analysis, therefore its preci-
sion suffer likewise. A step beyond the current scheme is to
generalize the transformations to produce degenerate

PCGs, which will further degrade analysis results. A
detailed discussion on this topic as well as an in-depth study
of the complexity of existing alias analysis frameworks can
be found in [21].

7. Implementation and Performance Results

We implemented the transformations in a source trans-
lator for ANSI C in the SUIF programming environment
[I] . In our implementation, we developed compiler passes
for the code transformations. Each pass traverses the SUIF
representation and performs the desired modifications. The
exact transformations are determined by a random seed:
that is, the resulting program is different for each compila-
tion. For example, the layout of the global array, the exact
percentage of the control-transfers that are transformed, and
the number of dead blocks that are added are all determined
by a random number generated from the seed.

We tested performance results obtained with experi-
mental transformations on the SPEC95 benchmark pro-
grams. Of issue here are three measures: Run-tinze
performance of the transformed program, perforniance of
static analysis, and precision of static analysis.

By run-time performance of the transformed programs,
we mean the execution time and the executable object size
after transformation. These measures reflect the cost of the
transformation. By performance of static analysis, we mean
the time taken for the analysis tool to reach closure and ter-
minate. A related but equally important criterion is the pre-
cision of static analysis, which indicates how accurate the
analysis result is compared to the true alias relationships.

7.1. Performance of the transformed program

The following data was obtained by applying our trans-
forms to SPEC95 benchmark programs. Three SPEC pro-

I

Statement

Figure 7: Effect of the degenerate control flow on alias analysis

199

Figure 8: Execution time (non-
optimized)

10% 3 0 % 5 0 % 8 0 %

Percentage of branches transformed

Figure 9: Execution Tim e (optim ized)

10% 30% 5 0 % 8 0 %

Percentage of branches transformed

grams are used in this experiment, Compress95, Go and LI.
Go is a branch-intensive implementation of the Chinese
board game GO. Compress95 implements a tightly-looping
compression algorithm, and LI is a typical input-output
bound program for a LISP interpreter. These programs are
standard benchmarks used in the compiler community.
They embody three major classes of high-level language
constructs that are widely used in general programming. It
would be more satisfying, however, to test our results on
the class of networking programs for which this solution
was intended. But in the absence of that, we believe that
these test programs are good representatives of real-world
programs.

We conducted experiments on both optimized (with the
gcc -0 option) and non-optimized versions of the programs.
The experiments were executed on a SPARC server. The
experimental results show that, in both cases, the perfor-
mance-slowdown increases exponentially with the percent-
age of transformed branches in the program. On average,
the performance speedup due to optimization is signifi-
cantly reduced when a more substantial portion of the pro-
gram is obfuscated.

This is an encouraging result; it is highly suggestive
(albeit not conclusive) that our transformations consider-
ably hindered the optimization that the compiler is able to
perform.

The performance of Go and li were similar for both
optimized and non-optimized code. Of the three original
programs, compiler optimization performed best on Com-
press-a whopping 80% decrease in the execution time due
to optimization. However, as can be seen in Figure 9, our
transforms removed significant optimization potential from
Compress; the execution speed of the transformed and opti-
mized Compress diverges most significantly from the per-
formance of the original optimized program. As Compress
is a loop-intensive program, it is likely that certain analyses
that enabled significant loop or loop kernel optimization
were no longer possible after our transform was performed.

The object size of the three benchmarks grew with
increased branch replacement (see Figure 10 and Figure
11). Go, a branch-intensive program, shows the largest code
growth with our transform. For 80% replacement of direct
branches, the executable size increased by a factor of 3 for
Go and Li, and by roughly 10% for Compress. Compress
contains relatively fewer static branches, and this resulted
in less potential for code growth with the transform.

We believe that these results are representative of many
programs. It appears that, on average, replacing 50% of the
branches will result in an increase of a factor of 4 in the
execution speed of the program. At the same time, the pro-
gram will nearly double in size.

The object size of the three benchmarks grew with
increased branch replacement (see Figure 10 and Figure

Figure 10: Executable Size (non-
optim ized)

10% 3 0 % 5 0 % 8 0 %

Percentage of branches transformed

Figure 11: Executable Size (optimized)

10% 3 0 % 5 0 % 8 0 %

Percentage of branches transformed

200

11). Go, a branch-intensive program, shows the largest code
growth with our transform. For 80% replacement of direct
branches, the executable size increased by a factor of 3 for
Go and Li, and by roughly 10% for Compress. Compress
contains relatively fewer static branches, and this resulted
in less potential for code growth with the transform.

We believe that these results are representative of many
programs. It appears that, on average, replacing 50% of the
branches will result in an increase of a factor of 4 in the
execution speed of the program. At the same time, the pro-
gram will nearly double in size.

In these experiments, we used a random algorithm to
choose which branch to transform. An obvious future
improvement is to employ intelligence to do the following:
a) identify the regions of the program that require greater
protection from static analysis, and b) selectively perform
transformation on the less-often-executed branches for bet-
ter performance penalty. Trade-offs between these two cri-
teria need to be considered for the most effective solution.

7.2. Performance and precision of static analysis

In this experiment, we test our techniques against exist-
ing analysis tools and algorithms. The state-of-the-art anal-
ysis tools include the NPIC tool [13] and the PAF toolkit
[181. They both implement an inter-procedural, flow-sensi-
tive algorithm. Both NPIC and PAF perform control-flow
analysis exactly once with no further refinement on the
flow graph.

In our experiments, PAF successfully analyzed small
sample programs (run to completion) but failed to handle
some of the large programs included in the SPEC bench-
marks. The failure characteristics were inconclusive as to
whether the analysis failed due to difficulties incurred in the
alias analysis or an inability of handling the size of the orig-
inal input program. The test cases that we successfully
completed with PAF included a wide range of sample pro-
grams that contain extensive looping constructs and branch-
ing statements. In each of these test cases, PAF terminated
reporting the largest possible number of aliases in the pro-
gram; in other words, it reported that any pointer variable is
possibly aliased to every variable that ever appeared on the
left hand side of an assignment statement. Because of the
size of the test programs, we observed negligible differ-
ences in the pre- and post-transformation analysis time. The
experience with the PAF tool, albeit with limited test cases,
indicated that PAF failed to resolve aliases across the flat-
tened basic blocks, and that our technique of making data-
flow and control-flow co-dependent presents a fundamental
difficulty that existing analysis algorithms lack the sophisti-
cation to handle.

NPIC implements a slightly more aggressive algorithm
that includes features such as function-pointer analysis. It

performs an iterative analysis interleaving the inter-and
intra-procedural analysis. Every time new aliasing informa-
tion is generated by an intra-procedural phase, it is propa-
gated to its successor functions which then repeat their
intra-procedural analysis, and so on, until the alias set con-
verges. Unfortunately, IBM no longer maintains and dis-
tributes the tool. The experience with NPIC was therefore
limited to analytical experiments with the NPIC algorithm.

A limited number of experiments with the NPIC algo-
rithm were conducted on small programs. These experi-
ments, to the extent that a semi-automated analysis would
allow, revealed that little accuracy was achieved when the
analysis terminates.

In a particular instance where index computation and
aliasing were used to compute branch targets, NPIC started
out indicating that the elements of the global array could
contain a number of possible values. As the iterations went
on, this information was never refined. Rather, alias rela-
tions identified in later iterations increased the set of possi-
ble values that the array elements were deemed to have.
The algorithm eventually terminated and claimed that the
elements of the global array were changed an arbitrary
number of times, and that they could contain arbitrary val-
ues. Computations involving the array elements were
deemed unanalyzable. This in turn implied that the indirect
branching targets cannot be determined precisely. Alias
information propagation among those blocks therefore did
not get easier and alias relations were never refined.

8. Conclusion

The problem of protecting trusted software from
untrustworthy hosts, is important for many critical func-
tions in modern networks. Consider, as an example, distrib-
uted intrusion detection systems in which parts of the ID
programs need to operate on untrustworthy hosts. Serious
consequences will arise if these programs were the targets
of malicious attacks and were compromised.

In this paper, we considered one significant class of
attacks, namely those based on static analysis of the binary
form of the program. We presented a strategy for defeating
analysis by tightly coupling the control flow and the data
flow of the program. Since data-flow analysis of acceptable
precision is dependent on the control-flow information, this
approach is capable of expanding analysis time consider-
ably and reducing the precision of the analysis to useless
levels. The theoretical bound that we have established
shows that analysis of programs that have been transformed
in this manner is NP hard.

We have developed a practical instantiation of the
transformation in the form of a compiler for ANSI C. The
compiler makes a number of changes to the program source
including: degeneration of the program control Row; the

201

systematic and general creation of aliases; and the introduc-
tion of data-dependent branches. We note that these trans-
formations are not dependent on a C-like pointer
paradigm-they can be applied to any intermediate repre-
sentation where explicit memory references exist.

In proof-of-concept experiments that we have con-
ducted on sample programs, the transformed versions
defeat currently available static-analysis tools. Although
such experiments are not and could never be definitive evi-
dence, we regard these results as promising indications that
we have a practical approach to defeat static analysis.

We note that the described transformations produce
programs with a considerable level of code diversity (trans-
forms are randomly chosen on a per compilation basis).
Such programs, when deployed at various points in a net-
work, are highly resilient to class attacks since most class
attacks exploit common software flaws.

It is important to note that the purpose of this work is to
eliminate the possibility that a static analysis can be used to
deduce useful information for software tampering or imper-
sonation. In other words, the optimal result is that there
should be no efficient way to analyze the program other
than an actual execution. We also note that many forms of
dynamic program analysis make use of static information
[3, lo], and the techniques described in this paper will be
helpful in defending against these forms of analyses.

Acknowledgments

The authors want to thank Dr. Jim Cohoon for insight-
ful discussions. This effort was sponsored in part by the
Defense Advanced Research Projects Agency and Rome
Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-96-1-03 14. The views and con-
clusions contained herein are those of the authors and
should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects
Agency, Rome Laboratory or the U.S. Government.

References

I Aigner, G. er al. “The SUIF2 Compiler Infrastructure”, Doc-
umentation of the Computer Systems Laboratory, Stanford Uni-
versity.
2 Aucsmith, D., “Tamper Resistant Software”, Proceeding of
the 1st information hiding workshop, Cambridge, England, 1996.
3 Ball, T. and J. R. Larus. “Optimally Profiling and Tracing
Programs”, ACM Transactions on Programming Languages and
Systems, Vol 16, No. 4, July 1994, pp1319-1360.
4 Collberg, C., C. Thomborson, and D. Low, “Breaking
Abstractions and Unstructuring Data Structures”, IEEE Interna-
tional Conference on Computer Languages, Chicago, May 1998.

5 Collberg, C., C. Thomborson, and D. Low, “A Taxonomy of
Obfuscating Transformations”, Techreport 148, Department of
Computer Science, University of Auckland, July 1997.
6 Forrest, S. and A. Soma, “Building Diverse Computer Sys-
tems”, in the 1996 Proceedings of the Hot Topics of Operating
Systenis.
7 Hohl, F., “Time Limited Blackbox Security: Protecting
Mobile Agents from Malicious Hosts”, in Lecture Notes in Corn-
puter Science, vol. 1419, Mobile Agents arid Security. Edited by G .
Vigna. Springer-Verlag, 1998.
8 Hitunen, M. and R. D. Schlichting, “Adaptive Distributed
and Fault-Tolerant Systems” International Journal of Computer
Systems Science and Engineering, vol. 11, No. 5 , pp. 125-133,
September 1996.
9 Knight, J., K. Sullivan, M. Elder, and C. Wang, “Survivabil-
ity Architectures: Issues and Approaches” in Proceedings:
DARPA Information Survivability Conference and Exposition.
IEEE Computer Society Press. pp. 157-17 I .

10 Larus, J., “Efficient Program Tracing”, Computer, Vol 26.
No. 5. May 1993. pp52-61.
1 1 Muchnick, S., “Advanced Compiler Design Implementa-
tion”, Morgan Kaufmann, 1997.
12 Myers, E., “A Precise Inter-procedural Data Flow Algo-
rithm”, in the conference record of the Eighth POPL. Williams-
burg, VA. January, 1981. pp 219-230.
13 Hind, M., M. Burke, P. Carini and J. Choi, “Inter-procedural
Pointer Analysis”, ACM Transactions on Programming Lan-
guages and Systems, Vol. 21, No. 4, July 1999, pp 848-894.
14 Horwitz, S., “Precise flow-insensitive may-alias analysis is
NP-Hard”, ACM Transactions on Programming Languages and
Systems, Vol 19. No.1, pp 1-6.
15 Landi, W., “Interprocedural Aliasing in the Presence of
Pointers”, Ph.D. Dissertation, Rugters University, 1992.

16 Landi, W., “Undecidability of Static Analysis”, ACM Let-
ters on Programming Languages and Systems, Vol. I , No. 4
December 1992, pp 323-337.
17 Landi, W. and B. Ryders, “A Safe Approximation Algorithm
for Interprocedural Pointer Analysis”, Techreport, Rutgers Uni-
versity, 199 1.

18 The Prolangs Analysis Framework (PAF). Rutgers Univer-
sity. ht t~: / /ww.w.nrolan~s.rut~~r .~.edi i /~i ihl ic

19 Rosen, B., “Data flow analysis for procedural languages”,
Journal of the ACM, Vol. 26, No. 2, pp 322-344.
20 Sander, T., and C. Tschudin, “Protecting Mobile Agents
Against Malicious Hosts”, in the Proceedings of the 1998 IEEE
Symposium of Research in Security and Privacy, Oakland, 1998.
21 Wang, C., “A Security Architecture for Survivability Mech-
anisms”, Ph.D. Dissertation, October 2000, University of Virginia.
22 Wang, C. Hill. J, Knight J. Davidson, J. “Software Protec-
tion in malicous environments”. CS Technical Report. CS-00-12.
Department of Computer Science, University of Virginia.

202

